Code: 23BS1102

I B.Tech - I Semester - Regular Examinations - JANUARY 2024

CHEMISTRY

(Common for EEE, ECE, CSE)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Write notes on molecular orbital theory.		CO1
1.b)	Write the significance of Ψ and Ψ^2 .		CO1
1.c)	Explain superconductors with an example.		CO2
1.d)	Write about the nanomaterials and give	L2	CO2
	examples.		
1.e)	Write about the secondary batteries with an	L2	CO2
	example.		
1.f)	Explain about the Potentiometric sensor.		CO2
1.g)	Outline the applications of PVC.		CO3
1.h)	Explain polymerization with an example.		CO3
1.i)	Explain the electromagnetic radiation and	L3	CO3
	interaction with matter.		
1.j)	Describe the basic principle of UV-visible	L2	CO3
	spectroscopy.		

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Make use of neat diagram to explain the	L3	CO2	5 M	
		formation of pi molecular orbital in				
		benzene.				
	b)	Derive the Schrodinger wave equation	L4	CO4	5 M	
		and explain the significance of the terms				
		involved.				
		OR				
3	a)	Make use of neat diagram to explain	L3	CO2	5 M	
		energy level diagram of O ₂ molecule.				
	b)	Analyze the significance of homo and	L4	CO4	5 M	
		hetero nuclear diatomic molecules in the				
		field of chemistry.				
	UNIT-II					
4	a)	Classify super – capacitors based on their	L4	CO2	5 M	
		characteristics and explain them in detail.				
	b)	Describe the extrinsic semiconductor and	L3	CO4	5 M	
		its types. Explain the processes which are				
		occurred during the formation of a P-N				
		junction.				
OR						
5	a)	Explain the preparation, structure and	L3	CO2	5 M	
		properties of high temperature super				
		conductor-CaTiO ₃ .				

	b)	List out the properties and applications of	L4	CO4	5 M	
		carbon nanotubes.				
	UNIT-III					
6	a)	Describe the construction and working of	L3	CO2	6 M	
		Hydrogen-Oxygen Fuel cell with a neat				
		diagram.				
	b)	What is the emf of the following cell at	L4	CO4	4 M	
		25°C Zn (s) Zn ²⁺ (0.2M) Ag ⁺				
		(0.002M) Ag (s). The standard emf of				
		the cell E° is 1.54 V.				
		OR				
7	a)	Explain the construction and working of	L3	CO2	6 M	
		Zinc-air battery with a neat diagram and				
		list out the advantages.				
	b)	Write the half-cell and net reactions of	L4	CO4	4 M	
		the following cell:				
		$\operatorname{Zn/Zn}^{+2}(1M) \parallel \operatorname{Cu}^{+2}(1M)/\operatorname{Cu}$				
		Find the EMF of the above cell given				
		$E^{0}(Zn^{+2}/Zn) = -0.76 \text{ V and}$				
		$E^{0}(Cu^{+2}/Cu) = +0.34 \text{ V}.$				
	UNIT-IV					
8	a)	Describe the properties, preparation and	L3	CO5	5 M	
		applications of Bakelite.				
	b)	Write a detailed step wise mechanism of	L4	CO3	5 M	
		cationic polymerization.				
	OR					

9	a)	Explain the properties, preparation and	L3	CO3	5 M	
		applications of nylon-6,6.				
	b)	Write about the mechanism of	L4	CO5	5 M	
		conducting polymers and its applications				
		with suitable example.				
		UNIT-V				
10	a)	Describe the Instrumentation and	L3	CO3	5 M	
		applications of IR spectroscopy.				
	b)	Explain the principle and instrumentation	L4	CO5	5 M	
		of High-Performance Liquid				
		Chromatography (HPLC) with a neat				
		diagram.				
	OR					
11	a)	Explain the Beer-Lambert's law	L3	CO3	5 M	
		statement and limitations.				
	b)	List out the characteristics of	L4	CO5	5 M	
		electromagnetic spectrum.				